You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

103 lines
8.3 KiB
JSON

{
"aliases": [
"stanfuncs"
],
"keywords": {
"title": "functions model data parameters quantities transformed generated",
"keyword": "for in if else while break continue return int real vector ordered positive_ordered simplex unit_vector row_vector matrix cholesky_factor_corr|10 cholesky_factor_cov|10 corr_matrix|10 cov_matrix|10 void print reject increment_log_prob|10 integrate_ode|10 integrate_ode_rk45|10 integrate_ode_bdf|10 algebra_solver",
"built_in": "Phi Phi_approx abs acos acosh algebra_solver append_array append_col append_row asin asinh atan atan2 atanh bernoulli_cdf bernoulli_lccdf bernoulli_lcdf bernoulli_logit_lpmf bernoulli_logit_rng bernoulli_lpmf bernoulli_rng bessel_first_kind bessel_second_kind beta_binomial_cdf beta_binomial_lccdf beta_binomial_lcdf beta_binomial_lpmf beta_binomial_rng beta_cdf beta_lccdf beta_lcdf beta_lpdf beta_rng binary_log_loss binomial_cdf binomial_coefficient_log binomial_lccdf binomial_lcdf binomial_logit_lpmf binomial_lpmf binomial_rng block categorical_logit_lpmf categorical_logit_rng categorical_lpmf categorical_rng cauchy_cdf cauchy_lccdf cauchy_lcdf cauchy_lpdf cauchy_rng cbrt ceil chi_square_cdf chi_square_lccdf chi_square_lcdf chi_square_lpdf chi_square_rng cholesky_decompose choose col cols columns_dot_product columns_dot_self cos cosh cov_exp_quad crossprod csr_extract_u csr_extract_v csr_extract_w csr_matrix_times_vector csr_to_dense_matrix cumulative_sum determinant diag_matrix diag_post_multiply diag_pre_multiply diagonal digamma dims dirichlet_lpdf dirichlet_rng distance dot_product dot_self double_exponential_cdf double_exponential_lccdf double_exponential_lcdf double_exponential_lpdf double_exponential_rng e eigenvalues_sym eigenvectors_sym erf erfc exp exp2 exp_mod_normal_cdf exp_mod_normal_lccdf exp_mod_normal_lcdf exp_mod_normal_lpdf exp_mod_normal_rng expm1 exponential_cdf exponential_lccdf exponential_lcdf exponential_lpdf exponential_rng fabs falling_factorial fdim floor fma fmax fmin fmod frechet_cdf frechet_lccdf frechet_lcdf frechet_lpdf frechet_rng gamma_cdf gamma_lccdf gamma_lcdf gamma_lpdf gamma_p gamma_q gamma_rng gaussian_dlm_obs_lpdf get_lp gumbel_cdf gumbel_lccdf gumbel_lcdf gumbel_lpdf gumbel_rng head hypergeometric_lpmf hypergeometric_rng hypot inc_beta int_step integrate_ode integrate_ode_bdf integrate_ode_rk45 inv inv_Phi inv_chi_square_cdf inv_chi_square_lccdf inv_chi_square_lcdf inv_chi_square_lpdf inv_chi_square_rng inv_cloglog inv_gamma_cdf inv_gamma_lccdf inv_gamma_lcdf inv_gamma_lpdf inv_gamma_rng inv_logit inv_sqrt inv_square inv_wishart_lpdf inv_wishart_rng inverse inverse_spd is_inf is_nan lbeta lchoose lgamma lkj_corr_cholesky_lpdf lkj_corr_cholesky_rng lkj_corr_lpdf lkj_corr_rng lmgamma lmultiply log log10 log1m log1m_exp log1m_inv_logit log1p log1p_exp log2 log_determinant log_diff_exp log_falling_factorial log_inv_logit log_mix log_rising_factorial log_softmax log_sum_exp logistic_cdf logistic_lccdf logistic_lcdf logistic_lpdf logistic_rng logit lognormal_cdf lognormal_lccdf lognormal_lcdf lognormal_lpdf lognormal_rng machine_precision matrix_exp max mdivide_left_spd mdivide_left_tri_low mdivide_right_spd mdivide_right_tri_low mean min modified_bessel_first_kind modified_bessel_second_kind multi_gp_cholesky_lpdf multi_gp_lpdf multi_normal_cholesky_lpdf multi_normal_cholesky_rng multi_normal_lpdf multi_normal_prec_lpdf multi_normal_rng multi_student_t_lpdf multi_student_t_rng multinomial_lpmf multinomial_rng multiply_log multiply_lower_tri_self_transpose neg_binomial_2_cdf neg_binomial_2_lccdf neg_binomial_2_lcdf neg_binomial_2_log_lpmf neg_binomial_2_log_rng neg_binomial_2_lpmf neg_binomial_2_rng neg_binomial_cdf neg_binomial_lccdf neg_binomial_lcdf neg_binomial_lpmf neg_binomial_rng negative_infinity normal_cdf normal_lccdf normal_lcdf normal_lpdf normal_rng not_a_number num_elements ordered_logistic_lpmf ordered_logistic_rng owens_t pareto_cdf pareto_lccdf pareto_lcdf pareto_lpdf pareto_rng pareto_type_2_cdf pareto_type_2_lccdf pareto_type_2_lcdf pareto_type_2_lpdf pareto_type_2_rng pi poisson_cdf poisson_lccdf poisson_lcdf poisson_log_lpmf poisson_log_rng poisson_lpmf poisson_rng positive_infinity pow print prod qr_Q qr_R quad_form quad_form_diag quad_form_sym rank rayleigh_cdf rayleigh_lccdf rayleigh_lcdf rayleigh_lpdf rayleigh_rng reject rep_array rep_matrix rep_row_vector rep_vector rising_factorial round row rows rows_dot_product rows_dot_self scaled_inv_chi_square_cdf scaled_inv_chi_square_lccdf scaled_inv_chi_square_lcdf scaled_inv_chi_square_lpdf scale
},
"lexemes": "[a-zA-Z]\\w*",
"contains": [
{
"className": "comment",
"begin": "\/\/",
"end": "$",
"contains": [
{
"begin": "\\b(a|an|the|are|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|they|like|more)\\b"
},
{
"className": "doctag",
"begin": "(?:TODO|FIXME|NOTE|BUG|XXX):",
"relevance": 0
}
]
},
{
"className": "comment",
"begin": "#",
"end": "$",
"contains": [
{
"$ref": "#contains.0.contains.0"
},
{
"className": "doctag",
"begin": "(?:TODO|FIXME|NOTE|BUG|XXX):",
"relevance": 0
}
],
"relevance": 0,
"keywords": {
"meta-keyword": "include"
}
},
{
"className": "comment",
"begin": "\\\/\\*",
"end": "\\*\\\/",
"contains": [
{
"className": "doctag",
"begin": "@(return|param)"
},
{
"$ref": "#contains.0.contains.0"
},
{
"className": "doctag",
"begin": "(?:TODO|FIXME|NOTE|BUG|XXX):",
"relevance": 0
}
],
"relevance": 0
},
{
"begin": "<\\s*lower\\s*=",
"keywords": "lower"
},
{
"begin": "[<,]*upper\\s*=",
"keywords": "upper"
},
{
"className": "keyword",
"begin": "\\btarget\\s*\\+=",
"relevance": 10
},
{
"begin": "~\\s*([a-zA-Z]\\w*)\\s*\\(",
"keywords": "bernoulli bernoulli_logit beta beta_binomial binomial binomial_logit categorical categorical_logit cauchy chi_square dirichlet double_exponential exp_mod_normal exponential frechet gamma gaussian_dlm_obs gumbel hypergeometric inv_chi_square inv_gamma inv_wishart lkj_corr lkj_corr_cholesky logistic lognormal multi_gp multi_gp_cholesky multi_normal multi_normal_cholesky multi_normal_prec multi_student_t multinomial neg_binomial neg_binomial_2 neg_binomial_2_log normal ordered_logistic pareto pareto_type_2 poisson poisson_log rayleigh scaled_inv_chi_square skew_normal student_t uniform von_mises weibull wiener wishart"
},
{
"className": "number",
"variants": [
{
"begin": "\\b\\d+(?:\\.\\d*)?(?:[eE][+-]?\\d+)?"
},
{
"begin": "\\.\\d+(?:[eE][+-]?\\d+)?\\b"
}
],
"relevance": 0
},
{
"className": "string",
"begin": "\"",
"end": "\"",
"relevance": 0
}
]
}